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where f(a, b, c, . . .  ) is the function, E! is the probable 
error in the function, and E a etc. are the probable 
errors of the independently measured quantities, the 
probable errors in the bond lengths and angles have 
been calculated and are listed in Table 5. Finally, 
Table 6 shows the comparison of some 630 calculated 
and observed structure factors for the final three- 
dimensional IBM calculation.* 

Fig. 2 shows the general features of the packing. 
The three N-C1 distances indicate weak hydrogen 
bonds, and the calculations of N-C1-N angles show 
that  the four atoms lie nearly in a plane. An interest- 
ing point in this structure is the close approach of both 
the ring oxygen and the ring nitrogen to the carbonyl 
oxygen of the next molecule. I t  seems at least possible 
that  a bifurcated hydrogen bond exists here. The plane 
of atoms 1, 3, 5, and 6 was calculated and found to be 

0.009075x + 0.1987y + 0.1577z - 1 = 0 .  

Of the ring atoms, the oxygen was found to lie furthest 

* Table 6 has been deposited as Document No. 4852 with the 
ADI Auxiliary Publications Project, Photoduplication Service, 
Library of Congress, Washington 25, D.C., U. S. A. A copy may 
be secured by citing the Document number and by remitting 
$2.50 for photoprints, or $1.75 for 35 mm. microfilm. Advance 
payment is required. Make checks or money orders payable to: 
Chief, Photodupllcation Service, Library of Congress. 

from this plane, at a distance of 0.06/~. Thus the ring 
is very nearly planar. 

This analysis was accomplished under Grant No. 
A-228 from the National Institutes of Health, and 
computations on X-RAC were supported by Contract 
No. N6onr-26916, T.0. 16, with the Office of Naval 
Research. We are extremely grateful for the assistance 
of Dr P. F. Eiland at various stages of the analysis. 
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A Method for Converting Exper imenta l  X-ray  Intensit ies  to an Absolute  Scale 
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A relationship between the density of a sample and an integral over the scattered X-ray intensity 
is derived. The relationship is shown to be useful in adjusting experimental X-ray intensities to an 
absolute scale. 

In nearly all X-ray work the scattered intensity is 
observed on an arbitrary relative scale. I t  is often 
desirable to obtain the intensities on an absolute scale. 
In the case of an X-ray amorphous scatterer, this has 
usually been done by assuming that  the observed in- 
tensity converges at large scattering angles to the sum 
of the squares of the atomic form factors and inco- 
herent scattering. This procedure is not quite satis- 
factory, as it requires accurate measurements of the 
low intensity scattered at large angles. In addition, 

* Present address: Department of Ceramics, The Penn- 
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the observed intensity will still have appreciable un- 
dulations in this region, making a curve-fitting proce- 
dure somewhat ambiguous. The purpose of this paper 
is to develop an analytical method, primarily intended 
for liquid scattering, but which may also be adapted 
for crystalline powder patterns. The equations are 
derived for a system containing one kind of atoms, 
but the generalization to complex systems is straight- 
forward. 

A pair distribution function a(r) is defined by 

a ( r ) =  f f O(p)~(p+r)d fdV ,  (1) 
r ! 
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where ~(p) is the electron density at point p, lv  dV  
is the integration over the whole volume V of the ir- 

radiated sample and ~ I /df  is an integration over the 

surface of a spherical shell of radius r = [rl with the 
center at  p. The total  coherent X-ray intensity scat- 
tered from the sample will then be: 

l 
~o sin sr 

I t  (s)  = cr (r)  d r ,  (2) 
o 8 r  

A M E T H O D  F O R  C O n V E R T I n G  E X P E R I M E N T A L  X - R A Y  I N T E I f f S I T I E S  

where s is taken to be 4~ sin 0/2, 20 being the scat- 
tering angle and 2 the wavelength of the radiation. 

S/nce the scattering at zero (and very small) angle, 
lo(s ), cannot easily be experimentally observed, it 
should be subtracted from It(s). The zero-angle scat- 
tering is essentially the scattering from the whole 
irradiated sample acting as one particle of uniform 
mean density ~0 = .Nz/V, where N is the total  number 
of atoms and z is the number of electrons on each atom. 
Hence I o (s) is obtained by substituting p (p)Q (p + r) = p0 ~ 
into equation (1), performing the integration and sub- 
sti tuting into equation (2): 

i(x) 

sin sr 
Io(s ) = 4~r2~  V dr.  (3) 

o 8 r  

(Strictly these equations assume an infinitely large 
sample. The subsequent error on going to an actual 
sample size is negligible, however.) 

Also the scattering which arises from distances 
within the same atom will be subtracted. This scat- 
tering is given by: 

Nf2(s) = N ~n(P)~,~(P+r) sin s_____r d fdVdr  
o v ! 8 r  

= l ?  aat(r) sin sr (4) 

By ~n(P) (and ~m(P)) should be understood the con- 
tribution to the electron density from atom n (and m 
respectively) at the point p; f(s) is the atomic form 
factor and aat.(r) the pair distribution function involv- 
ing only distances within the same atom. Hence it is 
possible to write: 

X , ( s ) - l o ( s ) - N f f  (s ) = a N I , ( s ) -  N (f2(s)+Ii(s)) 

= [0,(r)_0.at.(r)_4:gr~0~g] sin sr dr, (5) 
o 8 r  

where a N  is a factor which will bring the experimental 
intensity I~(s) (corrected for polarization) to an abso- 
lute scale and NIi(s) is the incoherent part  of the scat- 
tered intensity. A Fourier transform gives: 

(r (r) -- (rat . (r) -- 4xlr 2 ~ V 

2r N I ~ - [~I~(s) - f2(s ) - I i ( s )]  s sin srds.  (6) 
7~ 0 

The two first terms on the left side of equation (6) 
can be written: 

iS Z ~  v (7) a(r)--(rat . (r) = ~n(p)~m(p+r)d fdV ,  
m # n  V ] 

the summation being taken over all m different from n. 
Supposing r is small, then: 

a(r)-aat .  (r) = 4:rr, r2 ,~, .,~ I ~(p)~m(p) dV • (8) 
m:#-n d V 

If the electron shells of any two a~oms m and n do not 
penetrate into each other, then the product ~(p)Q~(p) 
will be zero. Substitution of equation (8) into equation 
(6) gives: 

= Ns2[a le ( s )_ f2 (s )_ i i ( s )  ] sin s r ~ .  (9) 
o 8 r  

By letting r go to zero and assuming tha t  there is no 
overlap of electron shells from different atoms, equa- 
tion (9) can be written: 

V 5" - - 2 ~ 2 0 2 N  = -- 2~2Z2 g 

S S = ~x S2Ie(S)~ - ( f f ( S ) + I i ( s ) ) s 2 ~ .  (10) 
o o 

This equation can in principle be used for finding o~, 
since the left-hand side of the equation can be deter- 
mined separately from the density of the sample. In  
applying equation (10), the infinity in the upper inte- 
gration limit must be substi tuted by the highest ex- 
perimentally accessible value, s o . Therefore the use- 
fulness of the equation depends upon how fast the 
difference of the integrals on the left-hand side con- 
verges. This will be considered in more detail in the 
following. 

An expression similar to (10) can be derived from 
the equations of the atomic center pair distribution: 

N ~ ° ~ I ~ ( s )  l°° ( I i (s) \  
= 0 s2 ds (11) - 2zt~ v o~)os f - ~ d s -  1 + f - - ~ )  . 

This equation is exact in so far tha t  there is no overlap 
of two different atoms. In this case, however, the 
integrals will e0nverge more slowly toward each other. 

For an artificial atomic electron-density distribu- 
tion, Uo(a ), where a is the distance from the center of 
the atom, and g(s) is the corresponding atomic form 
factor, one gets by analogy: 

# f - ~ ) )  s~g2(s)ds, (12) 
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since foo Ug(a)da = z .  (13) 
0 

The atomic electron-density distribution Ug(a) is 
related to the atomic form factor by: 

Ug(a) = 2-~ f : s g ( s )  sin sads . (14) 

Equation (12) is exact for electron-density distribu- 
tions Us(a ) which are zero for all values of a larger 
than half the closest approach of two atoms. With this 
limitation on g(s), it may be used as a weighting func- 
tion for speeding up the convergence of the right- 
hand side of equation (12). 

An interesting choice for g(s) is g(s) = f(s)  when s 
is smaller than s o and g(s) = 0 when s is larger than s 0. 
For this function the left-hand side of (12) will be 
identical with the left-hand side of (10). To see this 
one may observe that  

g(s) = Ug(a) sin s___aa & (15) 
o s a  

and 

f 
oO 

f ( s )  = U! (a) sin sa da . (16) 
o 8a 

When s goes to zero, one has 

f g(O) = f(O) ---- (a)da = U/(a)da = z .  (17) 
0 

For this choice of g(s) equation (12) can be written: 

V o c f : I e ( s ) s ~ c l s - f : ( f f ( s ) + l i ( s ) ) s g d s  (18) -- 2:~2qo2 ~ = 

Hence this equation does not depend on integration 
limits except through the discarded overlap term. The 
assumption about no overlap of electron shells will be 
better fulfilled for larger values of s o , however, since 
the distortion effect of finite integration limits 
broadens the electron-density distribution. For small 
values of so the term Q,(P).Qm(P) is by no means 
negligible compared with Q~(p). Correction for the 
overlap involves information about the pair distribu- 

tion function. An approximate correction can be cal- 
culated if it is assumed that  each atom has a fixed 
number of nearest neighbors at a fixed distance, co- 
ordination number and distance being estimated from 
other sources. 

For the highest values of s o easily obtained by 
standard experimental procedure, the error due to 
overlap will be negligible. This is demonstrated by an 
actual application of equation (18) to the experimental 
X-ray scattering from vitreous boron oxide. The ex- 
perimental data were obtained by the present author 
on a Geiger-counter diffractometer with crystal mono- 
chromatized Mo K s  radiation. Table 1 shows how the 

Table 1. The factor a, converting relative intensities to 
absolute intensities, for different values of the integration 

limit s o in the case of vitreous boron oxide 

8 0 ~ 8 0 OC 

3 0"803 7 0.992 
4 0"934 8 1.017 
5 1.038 9 1"010 
6 0"994 10 1"000 

normahzation factor oc varies with the upper integra- 
tion limit So; o¢ is taken to be unity at the largest 
observed value of s. The dependence on integration 
limit in this case is surprisingly small, considering that  
other errors are also involved, such as inaccurate 
atomic form factors due to incomplete knowledge 
about the electronic states in the solid. 

Note added in proof, 12 October 1956.--Through private 
channels it has been brought to the attention of the 
author that  a similar derivation has been utilized by 
Norman (1954). 

The author wishes to express his thanks to Dr 
B. Goodman, University of Missouri, for valuable 
discussions and to the International Cooperation Ad- 
ministration for a research fellowship grant. 
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